Interdisciplinary Infectious Disease Cluster (IIDC)

James Li, Chemistry
Delfina Dominguez, College of Health Sciences
Jianjun Sun, Biology
Team Members

• Faculty
 • Dr. James Li, Biotechnology, Department of Chemistry, COS
 • Dr. Delfina Dominguez, Clinical Laboratory Science/Public Health Sciences, CHS
 • Dr. JianJun Sun, Biology, CoS

• Others
Interdisciplinary Infectious Disease Cluster (IIDC)

• Infectious disease, a big public health concern
 • Such as the recent coronavirus pandemic (SARS-CoV-2)
 • 42 M COVID-19 cases (USA 8.5 M), 10/22/2020
 • 1.2 M Deaths (225 K), 10/25/2020
 • …

• IIDC Goal: Assembly of a distinguished interdisciplinary team to work collaboratively to address major problems in infectious disease to improve public health
 • Antimicrobial resistance (AMR)
 • COVID-19, and so on
Proposal

• Problem & Significance
 • Antimicrobial resistance (AMR) is an increasingly serious threat to global public health
 • Methicillin-resistant *Staphylococcus aureus* (MRSA)
 • Life threatening
 • The number one cause of hospital-associated infections with a high percentage of these caused by MRSA.
 • 72,444 MRSA infections and 9,194 related deaths each year in the U.S. only
 • Multidrug-Resistant TB (2018)
 • 450,000 MDR-TB
 • 170,000 deaths
Multidrug Resistance (MDR) Bacteria efflux multiple drugs similar to MDR cancer cells

• MDR in cancer therapy, a major obstacle

Same-Single-Cell Analysis for the Study of Drug Efflux Modulation of Multidrug Resistant Cells Using a Microfluidic Chip

XiuJun Li,† Victor Ling,‡ and Paul C. H. Li*†

Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada, and BC Cancer Research Center, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada

Cite this: Lab Chip, 2011, 11, 1378

www.rsc.org/loc

TECHNICAL NOTE

A simple and fast microfluidic approach of same-single-cell analysis (SASCA) for the study of multidrug resistance modulation in cancer cells†

XiuJun Li,§ Yuchun Chen and Paul C. H. Li§

Received 24th November 2010, Accepted 10th January 2011
DOI: 10.1039/c0lc00626b
Objective:

• To develop a POC microfluidic device for the rapid detection of MRSA, through specific recognition by integrated aptasensors on the chip using
 • a low-cost common thermometer
 • Smartphone –based technique

Plan: Proposal

• R01

• RFA-AI-20-001: Combating Antibiotic-Resistant Bacteria (CARB) Interdisciplinary Research Units (U19)

• TB resistance: R21 or R01
Thank you!

• Thanks for the IDR support!